LABORATORY MANUAL FOR WILDLIFE MOLECULAR FORENSICS

Richard Bischof, and Allen L. Szalanski,

University of Nebraska-Lincoln Lincoln, NE 68583

WWW http://nematode.unl.edu/aszalans.htm

TABLE OF CONTENTS

GENERAL PROCEDURES	3	
SAMPLE COLLECTION FOR DNA EXTRACTION	3	
DNA EXTRACTION DNA EXTRACTION FROM ANIMAL TISSUE	4	
DNA EXTRACTION FROM ANIMAL TISSUE	4	
DNA EXTRACTION FROM BLOOD DNA EXTRACTION FROM PLANT TISSUE	4	
DNA EXTRACTION FROM PLANT TISSUE	5	
DNA PURIFICATION	6	
DNA SEQUENCING	6	
DNA AMPLIFICATION	7	
RESTRICTION ENZYME DIGEST	7	
GELS	8	
PREPARING AND RUNNING AGAROSE GELS PREPARING AND RUNNING ACRYLAMIDE GELS	8	
PREPARING AND RUNNING ACRYLAMIDE GELS	9	
FORENSIC WORK	11	
SPECIES ID (MAMMALS)	11	
DNA FINGERPRINTING	11	
CERVID DNA FINGERPRINTING	11	
GENDER ID	11	
MAMMAL GENDER ID	11	
AVIAN GENDER ID (Gallinaceous Birds)	12	
APPENDIX		
THERMAL CYCLER PROFILES	14	
SOLUTIONS NEEDED	15	

GENERAL PROCEDURES

SAMPLE COLLECTION FOR DNA EXTRACTION

Fresh blood

- 1. pipette (or translocate otherwise) one to several drops of liquid blood onto paper towel
- 2. mark sample by circling stain with pen and indicating sample ID and other information
- 3. allow to dry
- 4. store in ziplock bag at -70?C (can also be stored at room temperature for extended periods) *instead of paper towel q-tips can be used by dipping them into fresh blood and storing them as above*

Blood stains, coagulated, and dry blood store in ziplock bag or vial at -70?C

Feathers

- 1. pluck one to several feathers from subject (contour feathers work well)
- 2. cut feathers 1-2mm above feather base
- 3. store bases in vial at -70?C

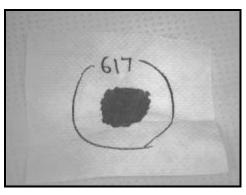


Figure 1: Paper towel with blood stain and sample ID.

Muscle and skin tissue store in ziplock bag or vial at -70?C

Fin tissue collection in the field

- 1. cut out desired portion of fin
- 2. spray fin clip with 95% Ethanol while holding over tray with forceps
- 3. place fin clip into vial filled with 95% Ethanol
- 4. add label with sample ID, date, location etc.

- 5. repeat for each sample while cleaning scissors and forceps between samples with 95% Ethanol *this is necessary to avoid both infection of subsequent fish and contamination of samples*
- 6. store vials at room temperature

Plant tissue

store in ziplock bag with silica gel at room temperature or store at -70?C

DNA EXTRACTION

DNA EXTRACTION FROM ANIMAL TISSUE

Figure 2: Preparing sample for DNA extraction.

- 1. label set of Ependorf tubes (1500?1)
- 2. move an aprox. 3mm x3mm large tissue sample into assigned tube
- 3. add 200?1 extraction buffer
- 4. add 1?1 Proteinase K (Figure 2)

perhaps brake sample in tube with 100ulpipette tip

- 5. incubate in waterbath at 55?C for 3 hrs
- 6. spin down (hold pulse button until centrifuge reaches aprox. 3000rpm)
- 7. add 100?1 Phenol under fume hood
- 8. shake each tube
- 9. incubate at 55?C for 15min while shaking tubes in 3-4min intervals
- 10. spin down
- 11. add 100?1 Chloroform under hood
- 12. shake each tube
- 13. centrifuge at 12000rpm for 5min
- 14. label new set of 1500?1 tubes
- 15. move top layer (with pipette set to aprox. 400?1) to new tube (Figure 3)
- 16. add 200?1 Chloroform
- 17. shake tubes
- 18. centrifuge at 12000rpm for 5min
- 19. label new set of tubes
- 20. move top layer to new tube
- 21. add 400?1 100% Ethanol
- 22. incubate at -20?C overnight if in a hurry samples can be incubated at -70?C for 3-4hrs
- 23. centrifuge at 12000rpm for 20min
- 24. decant Ethanol and shake out remaining liquid
- 25. add 300?170% Ethanol

- 26. centrifuge at 12000rpm for 10min
- 27. decant Ethanol and thoroughly shake out remaining liquid
- 28. dry at 20psi for 30 min
- 29. add 100?1 TE
- 30. flick up DNA pellet
- 31. keep at room temperature for 30min
- 32. store at -20?C

Figure 3: Removing supernatant.

DNA EXTRACTION FROM BLOOD

- 1. label 1500?1 Ependorf tubes
- 2. add 5-10?1 whole blood or a 1cm x 1cm piece of soaked tissue into each tube *blood samples should be frozen or fresh*

- 3. add 1000?1 nanopure water
- 4. incubate at room temperature for 30min-1hr
- 5. centrifuge at 12000rmp for 2min
- 6. remove supernatant with pipetter *careful to not disturb pellet*
- 7. add 200?1 chelex solution (with 1000?1 pipette tip) chelex solution should be stirred at moderate speed to keep beads in suspension
- incubate in waterbath at 56?C for 30min
- 9. vortex at high speed for 10sec
- 10. incubate in boiling waterbath for 8 min
- 11. vortex at high speed for 10sec
- 12. centrifuge at 12000rpm for 2min
- 13. use 20?1 of supernatant per 50?1
 PCR reaction (use 20?1 ddH2O per tube instead of 40?1)
 vary used volume if amplification unsuccessful
- 14. store at -20?C vortex and centrifuge samples for 2min at 12000rpm before each use

DNA EXTRACTION FROM PLANT TISSUE

1. label Ependorf tubes (1500?1)

- 2. warm up 2xCTAB Extraction
- buffer in hot water while stirring
- 3. cut aprox. 2mm piece off tip of 1000ul pipette tip
- 4. move 500?1 CTAB into each tube
- 5. add 1?12-Mercaptoethanol into each tube (under fume hood)
- 6. grind dry or frozen plant tissue (aprox. 1cm x 1cm size) in mortar
- 7. add into tube (submerge into CTAB)
- 8. incubate in water bath at 60?C for 1hr
- 9. spin down
- 10. add 500?1 Chloroform (under hood)
- 11. shake tubes
- 12. let sit for 10min
- 13. centrifuge at 12000rpm for 5min
- 14. label new set of tubes
- 15. transfer (with pipetter set to aprox. 500?1) upper layer to new tube (under hood)
- 16. add 500?1 Chloroform
- 17. shake tubes
- 18. let sit for 10min
- 19. centrifuge at 12000rpm for 5min
- 20. label new set of tubes
- 21. transfer upper layer to new tube
- 22. add 1000 ?1 100% Ethanol should end up with white flakes in yellowish liquid

- 23. incubate at -20?C overnight
- 24. centrifuge at 12000 rpm for 5 min
- 25. decant alcohol and shake out remaining liquid *careful not to remove pellet*
- 26. dry at 20psi for 20-30min
- 27. add 100?1 TE
- 28. disturb pellet with pipette tip
- 29. add 10 ?1 3xSodium Acetate
- 30. add 250 ?1 100% Ethanol
- 31. vortex at high speed for 5sec
- 32. incubate at -20?C for 1hr
- 33. centrifuge at 12000rpm for 10min
- 34. decant ethanol and carefully shake out tubes
- 35. add 1000?170% ethanol
- 36. mix well with pipetter (1000?1 tip) until dissolved
- 37. centrifuge at 12000rpm for 10min
- 38. decant alcohol and carefully shake out tubes
 - repeat the last 4 steps if CTAB (white layer on bottom) is still visible in the tube
- 39. dry at 20psi for 30min to 1hr
- 40. store at -20?C

DNA PURIFICATION

- 1. move 50?1 of PCR product onto Parafilm
- 2. insert filters into Microconcentrator tubes (red side up)
- 3. label Microconcentrator tubes
- 4. move pcr product from Parafilm into filter tube while leaving oil behind

do not pipette sample directly onto filter

- 5. centrifuge at 2500rpm for 15min
- 6. cut lids off new Microconcentrator tubes
- 7. label tubes on side
- 8. invert filters into new tubes (white side up)
- 9. centrifuge at 3500rpm for 5min
- 10. label 1500?1 Ependorf tubes on lid and on side
- 11. move resulting liquid (on Microconcentrator tube bottom) into Ependorf tubes with pipetter set to 7?1
- 12. wash out old tube with 7?1 nanopure water and add to new tube
- 13. store at -20?C

Testing for successful purification:

- 1. prepare 1% agarose gel
- 2. put dye-dots on Parafilm
- 3. add 1?1 purified DNA to each dot
- 4. add 3?1 TBE buffer from electrophoresis apparatus
- 5. fill samples into gel grooves with pipetter set to 7?1
- 6. pipette 7?1 100bp ladder into first groove
- 7. pipette 2.5?1 biomarker into last groove
- 8. run gel at 170V

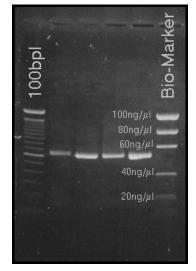


Figure 4: Gel with purified DNA and biomarker.

DNA SEQUENCING

We have our samples sequenced by the University of Iowa Sequencing Facility, Ames, IO. Samples for sequencing are prepared as follows:

- purify desired DNA samples as described in section "Purification" Steps 1-12
- 2. label 1500?1 Ependorf tubes for primers (lid and side)
- 3. add 15?1 nanopure water
- 4. add 5?1 primer (from working solution)
- 5. seal primer and purified DNA tube lid with Parafilm (1cm x 3cm strip) one set of primers is sufficient for all samples sent in a single batch that were amplified with that primer pair
- 6. fill out sequencing order form
- 7. send in reinforced envelope
- 8. Sequences can be retrieved via FTP from biocomp.unl.edu

DNA AMPLIFICATION

Figure 5: Thermal Cycler with samples.

- 1. write out component quantities per tube
- ? 1?1 primer 1
- ? 1?1 primer 2
- ? 5?1 buffer
- ? 4 ?1 nucleotides (dNTP)
- ? 0.5?1 taq polymerase
- ? 40?1 nanopure water
- 2. multiply with number of tubes
- 3. label 500?1 PCR tubes for each sample
- 4. add primers to master solution tube (1500?1 Ependorf tube)
- 5. add buffer
- 6. add nucleotides

7. add taq polymerase

keep in freezer until needed and return immediately

8. add nanopure water

use calculated quantity plus 10% of calculated quantity of water

- 9. add 48?1 of master solution in each PCR tube
- 10. add 1?1 template
- 11. add one drop of oil
- 12. turn on thermal cycler and start
- 13. move PCR tubes into thermal
 - cycler (Figure 5)

first allow thermal cycler to reach apprx. 85?C to prevent the activation of non-desired enzymes with lower working temperature

- 14. when program is done turn thermal cycler off
- 15. store PCR product at -20?C

Testing for successful amplification:

- 1. prepare agarose gel
- 2. put dye-dots on Parafilm
- 3. add 5?1 PCR product per dye dot
- 4. load DNA-dye mixture into gel grooves (pipetter set to 7?1)
- 5. run gel
- 6. mark all PCR tubes containing amplified DNA (toss the rest)
- 7. mark all tubes containing original DNA that amplified

RESTRICTION ENZYME DIGEST

FINDING RESTRICTION ENZYMES AND SITES

- 1. -obtain sequence (.e.g. from biocomp)
- 2. -locate bases in sequence that are variable (on a desired level)
- 3. -paste sequence into WebCutter
- 4. -run search on restriction enzymes that recognize sites anywhere within the sequence

output is a list of restriction enzymes with the name, the recognicion site and the position of the cut(s) in the pasted sequence

- 5. -look for a restriction enzymes that cut at the positons that are variable
- 6. find all the recognition sites of a choosen restriction enzyme
- 7. check alligned sequences (exclude outgroup to avoid gaps, otherwise the bp numbers are not conform) to make sure the sites are real
- 8. calculate fragment sizes

RESTRICTION ENZYME DIGEST

1. write out component quantities per tube:

reactions without BSA:

- ? 0.5?1 restriction enzyme
- ? 1?1 buffer
- ? 6?1 nanopure water reactions with BSA:
- ? 0.5?1 restrictions enzyme
- ? 1?1 buffer
- ? 1?1 BSA
- ? 5?1 nanopure water
- 2. multiply with number of samples
- 3. label a 1500?1 Ependorf tube for each sample
- 4. add restriction enzyme to master solution tube (1500?1 Ependorf tube)

5. add buffer *buffers are restriction enzyme-specific*

- 6. add BSE if required
- 7. add nanopure water use calculated quantity plus 10% of calculated quantity of water
- 8. pipette 7?1 of master solution into each reaction tube
- 9. add 3?1 PCR product
- 10. incubate at required temperature overnight

reaction conditions for restriction enzymes can be found in catalogue and in information sheet shipped with restriction enzymes

- 11. spin down (until ca. 3000rpm)
- 12. run 15?1 on 10% acrylamide gel
- 13. store at -70?C

GELS

PREPARING AND RUNNING AGAROSE GELS

- 1. add 2g (for 1% agarose gel) Agarose (low EEO) to 200ml 0.5xTBE
- 2. add 6?1 Ethidium Bromide
- 3. heat up in microwave for 3min (leave lid unscrewed)
- 4. transfer 40ml or 100ml (depending on required gel size) into Pyrex glass
- 5. cool for 1-2min under running water
- 6. pour into gel form
- 7. remove air bubbles in gel by moving gel comb
- 8. let sit for 20min
- 9. remove comb and stoppers

- 10. fill electrophoretic apparatus with 0.5xTBE buffer buffer can be reused many times but needs to be refilled since it tends to evaporate
- 11. submerge into electrophoretic apparatus with gel facing cathode *gel surface has to be covered with buffer*
- 8. put dye-dots on Parafilm
- 9. add 5?1 PCR product (or as much as required) per dye dot
- 10. load DNA-dye mixture into gel grooves (pipetter set to 7?1) (Figure 6)
- 11. pipette 6?1 (4?1 if small gel) into gel buffer at anode end of gel

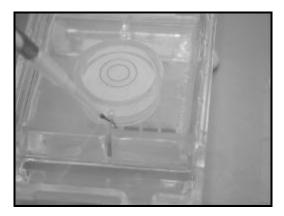


Figure 6: Loading agarose gel.

12. close lid

13. connect cables to transformer

- 14. set transformer to required voltage 1% gel should be run at voltages between 160V and 170V
- 15. turn transformer on *bubbles should emerge from cathode*
- 16. fill in data sheet
- 17. run gel for 45 minutes or until dye line is near gel end
- 18. turn transformer off and disconnect wires from gel box
- 19. disconnect wires from transformer
- 20. remove gel with tray from apparatus (use glove)
- 21. slide gel onto Transilluminator
- 22. put on UV goggles \swarrow
- 23. place camera over gel
- 24. turn light off
- 25. turn Transilluminator on
- 26. expose film for 1sec at f3.5
- 27. remove Polaroid film from camera
- 28. wait 30sec (while shaking Polaroid)
- 29. open print and remove negative
- 30. tape positive onto gel data sheet
- 31. clean Transilluminator with Kimwipes

The Spyradies product The Gal Chargement for	Decordine Decordine 9/23/	48
Oct Composition Agilent Aurylanide <u>0.55 THE</u> Buffer nil gel volume	No. Inc.	182
Rossing Baffer:ATBE	and the second s	20
Elerrophensis Conditions Constat Vehage 160 Time On Off Tonit 200000		10
NCR Primes : Forward 154 Brieses (195		
Reverse / <u>TSS</u>		
Bereine (1925	A. Sauch	
Brears /125	(1) SV2	
Bereine (1 <u>25</u>) Thermozycler Hogene <u>65</u> Steaplies (in Lanes from left in right <u>8</u>		
Briess /HZ Themssyciar Program. <u>6.5</u> Securities to Lasees from left to right:	(1) SV2	
Briess (125) Themssyckir Hogens 6/5 Seeples in Laws free left in right 8	10 SV2	
Binane (125) Themssyster Hogens 6.5 Singles in Lanes from left to right 8	III SV2 II bismler II	
Binane (125) Themssyster Hogens 6.5 Singles in Lanes from left to right 8	II SV2	
Briess /B2 Themssyckir Program _6_5 Secula is Lases from left is right 8 1 30 g/2 3 50 g/2 3 50 g/2	III SV2 III Joisenhor III III	
Binners /ES Themssyckir Hogen 6.5 Singles in Laws free left to right: 8 1 506/20 3 Spit/20 3 Spit/20 3 Spit/20 3 Spit/20 4 Spit/20 3 Spit/20 4 Spit/20 4 Spit/20 4 Spit/20 4 Spit/20	112 SV2 117 Dostander 114 114 114 114	
Binners (P2) Thermssyster Hogram 6.5 Samples in Lance from left to right #	112 SV2, 112 Desember 14 14 15 16 17	
Binners (P2) Thermssyster Hogram 6.5 Samples in Lance from left to right #	111 SV 2, 112 Doisonder 114 114 115 116 117 118 118	

Figure 7: Example gel sheet.

PREPARING AND RUNNING ACRYLAMIDE GELS

- 1. assemble gel forms
- 2. add gel ingredients while stirring (USE GLOVES!)
- for 2 gels:
 - ? 28ml nanopure water
 - ? 5ml 10xTBE

- ? 17ml Acrylamide (for 10% gel)
- ? 350?1 Ammonium Persulfate
- ? 200?1 Photoflo
- ? 30?1 Temed

add Temed last since it causes the polymerization

- 3. stir for 30 sec
- 4. poor into gel form if gel is leaking lightly pipette at leakage and fill back in at top
- 5. insert comb
- 6. let sit for 1hr
- 7. fill 1xTBE into grooves
- 8. store in refrigerator
- 9. before using warm up to room temperature and remove comb
- 10. refill grooves with 1xTBE
- 11. load gel (with loading pipette tips)
- 12. attach cathode carrier
- 13. submerge gels in gel box box should be filled to about ¹/₂ with 1xTBE buffer
- 14. fill cathode-carrier with 1xTBE buffer until about 1cm above cathode
 - buffer can be reused several times
- 15. plug into power source
- 16. turn power source on
- 17. select appropriate voltage (e.g. 350V)
- *air bubbles should emerge from cathode* 18. complete gel sheet

- 19. run for 1 ¹/₂ hrs or until dye line reaches gel bottom
- 20. turn power source off
- 21. disconnect wires
- 22. remove gel from gel-box (with gloves)
- 23. fill buffer from cathode carrier back into container
- 24. fill glass tray with 0.5xTBE buffer (ca. 1cm deep)
- 25. add 60?1 Ethidium Bromide
- 26. mix well
- 27. remove plates from cathode-carrier

- 28. run spatula through top of gel plates to separate gels from each other
- 29. peel plates apart by inserting a free spacer
- 30. move gel into TBE-Ethidium Bromide bath
- 31. let sit for 10min
- 32. move gel onto transilluminator
- 33. place camera over gel
- 34. put on UV goggles 🖉
- 35. turn off light
- 36. turn on transilluminator
- 37. take picture (f3.5/6-8sec)
- 38. remove Polaroid from camera

- 39. wait 30sec while shaking film
- 40. peel apart and remove negative
- 41. tape positive onto gel data sheet
- 42. move gel into gel basket
- 43. clean Transilluminator with Kimwipes
- 44. clean glass trays
- 45. clean glass plates (scrub under running water and rinse with sterile water)

FORENSIC WORK

SPECIES ID (MAMMALS)

<u>GENERAL</u>

- 1. run cytochrome b amplification with following primers (Kocher et al. 1989):
 - ? CytB(L14841) (5'-CCATCCAA
 - ? CATCTCAFCATFATFAAA-3')
 - ? CytB(15149) (5'-GCCCCTCAG
 - ? AATGATATTTGTCCTCA-3')
- 2. run restriction enzyme digest with following three restriction enzymes:
 - ? Msp I (5'...C/CGG...3')
 - ? Alu I (5'AG/CT...3')
 - ? Hae III (5'...GG/CC...3')
- 3. run on acrylamide gel
- 4. compare results with database to identify species (Examples: Table 1)

<u>CERVIDS</u>

- 1. run D-Loop amplification with following primers (Murray et al. 1995):
 - ? CERDL 1(5'-GGGTCGAAGG
 - ? CTGGGACCAAACC-3')
 - ? CERDL 2 (5'-TAATATACTGG

- ? TCTTGTAAACC-3')
- 2. run restriction enzyme digest with following four restriction enzymes:
 - ? Msp I (5'...C/CGG...3')
 - ? Ase I (5'...AT/TAAT...3')
 - ? Hae III (5'...GG/CC...3')
 - ? Hha I (5'...GCG/C...3')
- 3. run on acrylamide gel
- 4. compare results with database to identify species (Figure 10)

DNA FINGERPRINTING

CERVID DNA FINGERPRINTING

- 1. use the following microsatellite primer pairs (DeWoody et al. 1995)
 - ? Cervid 1 forward/reverse
 - ? Cervid 3 forward/reverse
 - ? Cervid 4 forward/reverse
 - ? Cervid 14 forward/reverse
- 2. write out component quantities per tube for each primer pair
 - ? 1?1 primer 1
 - ? 1?1 primer 2
 - ? 5?1 buffer
 - ? 4 ?1 nucleotides (dNTP)

- ? 0.5?1 taq polymerase
- ? 40?1 nanopure water
- 3. proceed as described in "DNA Amplification" (steps 2. to 16.)

GENDER ID

MAMMAL GENDER ID

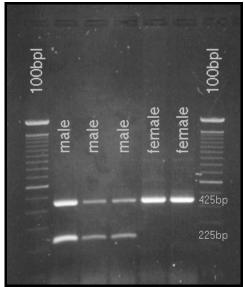


Figure 8: Gel with gender specific banding pattern for mammals.

- 1. add 2?1 of each of the following primers and 92?1 sterile water into one(!) 1500?1 Ependorf tube:
 - ? Y53-3C (5'-CCCATGAACGCATTCATTGTGTG G-3')
 - ? Y53-3D (5'-ATTTTAGCCTTCCGACGAGGTCG ATA-3')
 - ? P1-4EZ (5'-ATAATCACATGGAGAGCCACAA GCT-3')
 - ? P2-3EZ (5'-GCACTTCTTTGGTATCTGAGAAA GT-3')
- 2. write out component quantities per tube
 - ? 4?1 gender ID primer mix
 - ? 5?1 buffer
 - ? 4?1 nucleotides (dNTP)
 - ? 0.5?1 taq polymerase
 - ? 40?1 nanopure water
- 3. proceed as described in "DNA Amplification" (steps 2 to 15)
- 4. run 15?1 PCR product on 1% agarose gel at 160V-170V male DNA has two amplicons : female DNA has only one amplicon

5. store PCR product at -20?C

AVIAN GENDER ID (Gallinaceous

Figure 9: Gel with gender specific banding pattern for birds.

- add 2?1 of each of the following primers (D'Costa & Petitte 1998) and 96?1 sterile water into one(!) 1500?1 Ependorf tube
 - ? 5'-CAGGAAATGCCAGTTTATCG-
 - 3' ? 5'-
 - ATGTTTTGGGGGGCAAAAATCC-3')

? 5'-

TTGGAGGAGGCTCTCTGACTGCT TTGCCCG-3')

? 5'-

CCAACGTTGATGGCTGGACGGA TACCT-TTG-3'

the primer concentration in the primer mix might have to be adjusted in order to achieve optimal quality of the PCR product

- 2. write out component quantities per tube
 - ? 4?1 gender ID primer mix
 - ? 5?1 buffer
 - ? 4 ?1 nucleotides (dNTP)
 - ? 0.5?1 taq polymerase
 - ? 40?1 nanopure water
- 3. proceed as described in "DNA Amplification" (Steps 2 to 15)
- 4. run 15?1 PCR product on 2.5% agarose gel at 115V-125V male DNA has one amplicons : female DNA has two
- 6. store PCR product at -20?C

Positive and negative controls should be run with all forensic PCR an RFLP reactions.

Species	Alu I	Hae III	Hinf II	Rsa I
Fallow deer, Dama dama	304	74, 233	161	none
White-tailed deer, Odocoileus virginianus	none	none	63, 161	none
Mule deer, Odocoileus hemionus	none	none	162	323
Red deer, Cervus elaphus	none	74, 233	44	238
Pronghorn, Antilocapra americana	304	74, 233	161	none
Bison, Bison bison	190	74, 233	161	326
Mountain goat Oreamnos americanus	none	74, 227, 233	44	none
Bighorn sheep, Ovis canadensis	none	74, 233	none	none
Wild Turkey, Meleagris gallopavo	none	74, 130, 190, 233	1, 161	249, 250
Ring-necked pheasant, Phasianus colchicus	none	74, 223	161, 278	154, 256
Human, Homo sapiens	none	233, 338	161	none

Table 1: Cytochrome B restriction sites of four restriction enzymes for common wildlife species

APPENDIX

THERMAL CYCLER PROFILES

Amp	Step	Number of	Denaturation		Annealing		Extension	
		Cycles	Temp.	Duration	Temp.	Duration	Temp.	Duration
Cervid D-Loop Murray et al. 1995	Initial Denaturation	1	94?C	5min	54?C	30sec	72?C	2min
Mullay et al. 1995	PCR Cycles	30	94?C	15sec	54?C	30sec	72?C	2min
Cervid Missogatalitta	Initial Denaturation	1	94?C	2min				
Microsatelitte DeWoody et al. 1995	PCR Cycles	35	94?C	30sec	58?C	30sec	72?C	30sec
	Final Extension						72?C	5min
Mammal Gender	Initial Denaturation	1	94?C	5min	60?C	45 sec	73?C	1min
ID	PCR Cycles	39	94?C	40sec	60?C	45sec	73?C	1min
Cytochrome B	Initial Denaturation	1	94?C	5min 30sec				
Unpublished data	PCR Cycles	35	94?C	45sec	48?C	45sec	72?C	1min
	Final Extension						72?C	10min
Bird Gender ID D'Costa & Petitte 1998	Initial Denaturation	1	94	1min 15sec				
D Costa & Petitte 1998	PCR Cycles	40	94?C	10sec	51?C	10sec	72?C	10sec
	Final Extension						72?C	5min
Fish D-Loop Bernatchez et al. 1992	Initial Denaturation	1	94?C	5min	50?C	45sec	72?C	2min
Bernatchez et al. 1992	PCR Cycles	34	94?C	40sec	50?C	45sec	72?C	2min
rDNA ITS I	Initial Denaturation	1	94?C	2min 30sec				
Szalanski et al. 1997	PCR Cycles	40	94?C	45sec	53?C	45sec	72?C	1min 30sec
	Final Extension	-					72?C	10min

Appropriate annealing temperatures for a certain primer can be determined with the help of the *Primer Calculator* on the following web site: <u>http://www.res.bbsrc.ac.uk/biochem/oligos/input.html</u>.

In general an initial denaturation (30sec-1min30sec) should be followed by 30-35 cycles of 94?C (45sec), annealing temp. (45sec), 72?C(45sec).

SOLUTIONS NEEDED

Solution	Recipe
	псере
1.0% Agarose, Low EEO (used for check gels)	In a 250ml glass bottle, place 2.0g agarose and 200.0ml 0.5X TBE buffer and then aliquot 4.0?l 2.5mg/ml EtBr
∠ Cap tightly and store at RT	
See under 'Ethidium Bromide'	
10% Ammonium Persulfate	Add 1g ammonium Persulfate Powder to 10ml H2O.
📧 store in refrigerator	
<i>E</i> may cause irriation and sensitization of the respiratory system	
0.5M EDTA, pH 8.0	Add 186.1g of disodium ethylenediaminetetraacetate . 2H2O to about 600ml ddH2O. Stir vigorously on a magnetic stirrer. Adjust the pH to 8.0 with NaOH (about 20g of NaOH pellets).
🖉 Store at RT.	*The disodium salt of EDTA will not go into solution until the pH of the solution is adjusted to approximately 8.0 by the addition of NaOH.
<i>Æ</i> disodium-ethylenediaminetetra- acetate may cause respiratory and diggestive tract irritation as well as eye and skin irritation	*Be very careful while adding NaOH to the solution when approaching pH 8.0 solution tends to change pH much faster the nearer it gets to 8.0. Pour the solution into a 1L graduate cylinder and bring volume up to 1L. (*Can make smaller volumes than this—ex. 200ml.)
10X Gel Dye Reagent Final Concentration in 10X Solon	Dispense into aliquots (ex., 2 500ml, etc.) and sterilize by autoclaving. 500?1 glycerol 50% 400?1 0.5M EDTA 0.2M 2.5mg Bromophenol Blue (dye)0.25%
Store at constant -20oC.	About 5?1 1M Tris (i.e., however much is required to change the pH so that the color turns from green to blue) About 100?1 sterile ddH2O
≤ see under 0.5M EDTA and 10X TBE	Approximately 1,000?1 total volume Mix well by pumping and aliquot 1.0ml to as many sterilized 1.6ml centrifuge tubes as needed.
DNA extraction buffer	(100 mM EDTA, 100 mM NaCl, 100 mM Tris pH 7.5, 0.5% SDS, 200 ug proteinase K).
✓ Store at RT	
⊯ see under 0.5M EDTA and 10X TBE	

DNA Ladder (50bp, 100bp)	These come at a 1?g/?l concentration—extremely concentrated. Dilute 8.0?l of this stock in 392.0?l sterile ddH2O (1:50 dilution), aliquot 40.0?l gel dye, and mix by pumping several times.
Store in refrigerator	7?1 are used per lane on a check gel.
2.5mg/ml Ethidium Bromide (EtBr)	Add 0.25g (= 250mg) of ethidium bromide to 100ml of ddH2O. Stir on a magnetic stirrer for several hours to ensure that the dye has dissolved. use about 6.0?1 of this solution per 200.0ml of an agarose solution.
Store at +4?C in the dark	
Depowerful mutagen and moderately toxic. Gloves should be worn when working with solutions that contain this dye; check to see what regulations your lab may have regarding its disposal.	
20uM working stocks of your primers	In a 1.6ml centrifuge tube, aliquot 98.0?l sterile ddH2O, 98.0?l 1X TE, pH 8.0, and 4.0?l of 1mM primer storage stock (already mixed well by pumping). This gives 200.0?l of a 20?M working stock of your primer with a 0.5X TE concentration—an amount quickly used up with little chance of becoming degraded.
✓ Store at -20?C	

10X TBE (stock electrophoretic buffer)	108.0 g Tris 0.89 M g Boric Acid 0.89 M ml 0.5 M EDTA, pH8.0 0.02 M
A precipitate forms when concentrated solutions of TBE are stored for long periods of time. To avoid problems, store the solutions at RT and discard any batches that develop a precipitate.	Dissolve the above reagents in 500-600ml ddH2O and then bring solution to 1L.
E boric acid may cause irritaion to the eyes and skin, it may also cause reproductive effects, TRIS can cause irritation to the eyes and skin and causes burns to the mouth and stomach when ingested	
0.5X TBE (electrophoretic running buffer)	add 1L 10X TBE buffer to 19L of ddH2O. Mix well before using.
∠ store at RT	
≤ see 10X TBE 1X TE, pH 8.0	Make up your needed volume of solution so that you have 10mM Tris . HCl, pH 8.0 & 1mM EDTA, pH 8.0 as your final concentrations.
& Store at RT.	*For TE at a certain pH (ex., 8.0), use Tris-HCl at that certain pH. No matter at what pH you want the TE, use EDTA at pH 8.0.
≤ see 10X TBE	*We usually use TE at pH 8.0. Dispense into aliquots and sterilize by autoclaving.

"T" stands for Tris (or Tris-HCl) -- stabilizes DNA by buffering solutions very well

"B" stands for Boric Acid

"E" stands for EDTA (Disodium Ethylenediaminetetraacetate . 2H2O) -- chelates Mg+2 ions (i.e., takes them out of solution thereby preventing them from interacting with enzymes such as DNases and Taq Polymerase).

**Molarity (M) is a concentration (i.e., moles per liter), while moles (m) is an amount.

****dH2O** refers to distilled, dionized water and sometimes to double distilled water, which are two different things, but both appear to work equally well in the various protocols/recipes. Store at room temperature (RT).

*Remember, 1.0g of solute in 100.0ml of liquid makes a 1.0% solution.

LITERATURE CITED

Bernatchez, L., R. Guyomard, and F. Bonhomme. 1992. DNA sequence variation of the mitochondrial control region among geographically and morphhologically remote European brown trout, *Salmo trutta*, populations.Molecular Ecology 1:161-173.

D'Costa, S. and J.N. Petitte, 1998. Sex identification of turkey embryos using a multiplex polymerase chain reaction. Poultry Science 77:718-721.

D'Woody, J.A., R.L. Honeycutt and L.C. Skow, 1995. Microsatellite markers in white-tailed deer. J. Hered. 86:317-319.

Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, F.X. Villablance, and A.C. Willson. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conservbed primers. Proc. Nat. Acad. Sci. 86: 6196-6200.

Szalanski, A.L., D.D. Sui, T.S. Harris, and T.O. Powers. 1997. Identification of cyst nematodes of agronomic and regulatory concern with PCR-RFLP of IS1. J. Nematol. 29:255-267.